

Features:

- 5,000 Vrms electrical isolation
- Choice of a Single and Dual LED
- Choice of Phototransistor or Photologic[®] Sensor
- Low-cost plastic Dual-In-Line (DIP) package

Agency Approvals:

- ML Certification No: E58730
- VDE pending

Description:

The OPIA800D through OPID804D optocouplers are designed for applications that utilize a digital output (Phototlogic®) in a dual-in-line package. Isolation voltage from 2,500 to 5,000 Volts RMS product are designed for some of the most stringent power system isolation requirements.

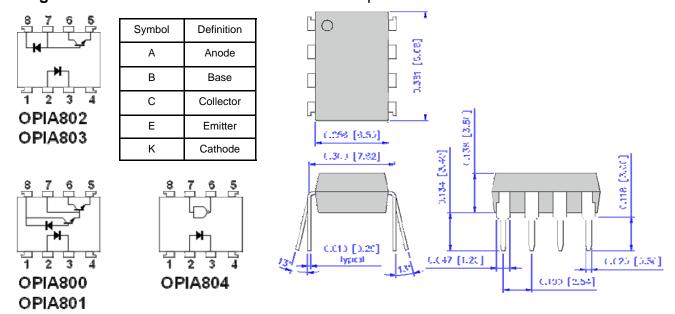
Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog or digital signals may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 volts RMS. A variety of LED and photosensor configurations are available depending on the system requirements

$$CTR = \frac{Photosenso \quad r - Current}{LED - Current} = \frac{20 \text{ mA}}{10 \text{ mA}} * 100 = 200$$

All DIP product is shipped in a shipping tube with "TU" identified on the end of the part number. Example: OPI800DTU is a 8-Pin DIP shipped in a tube (TU).

Applications:

- High voltage isolation
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment


RoHS

	Analog Output Devices Ordering Information							
Part Number	Isolation Voltage Max. (Vrms)	CTR Min/Typ/Max	Typ. Tplh / Tphl (ns) $[R_L = ohms]$	Package	Configuration			
OPIA800	2,500	300 / 1,600 / -	7 / 2 [2.2 K]	8 Pin DIP	A K—K A B C E (Dar)			
OPIA801	2,500	500 / 1,600 / -	10 / 5 [4.7 K]	8 Pin DIP	A K—K A B C E (Dar)			
OPIA802	2,500	15 / 43 / -	0.3 / 0.3 [1.9 K]	8 Pin DIP	A K—K A C E			
OPIA803	5,000	5 / 43 / -	0.4 / 0.3 [4.1 K]	8 Pin DIP	A K—K A C E			
	Digital	Output Devic	es Ordering Ir	nformation				
Part Number	Isolation Voltage Max. (Vrms)	Typ. Tr / Tf (ns) $[R_L = 350 \text{ ohms}]$	Typ. Tplh / Tphl (ns) $[R_L = ohms]$	Package	Configuration			
OPID804	5,000	30 / 30	45 / 45 [350]	8 Pin DIP	A K—NAND			
			: Definition of Terms —Sensor Identification	1				
LED	A = Anode	K = Cathode						
Consor	10K Logic	10K Inverted Logic	NAND Gate	NAND Gate				
Sensor	K = Cathode	A = Anode	B = Base	C = Collector	E = Emitter			
Packaging	Part Number S	Suffix: TU = Ship in Tu	ubes, TR = Ship on T	ape and Reel	Example: OPID606DTR			

Don't Normalism	Pin #							
Part Number	1	2	3	4	5	6	7	8
OPIA800		Α	К		E	С	С-В	K-C
OPIA801		Α	K		E	С	С-В	K-C
OPIA802		Α	К		E	С	A-B	К
OPIA803		Α	К		E	С	A-B	К
OPID804		А	K		GND	Output	Enable	Vcc

Package Outline Dimensions and Schematics: Top-View

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature	-55° C to +125° C
Operating Temperature OPIA800 OPIA801 OPIA802 OPIA803 OPID804	-40° C to +115° C 0° C to +125 ° C -55° C to +115° C -55° C to +100° C 0° C to +85° C
Isolation voltage (1 minute) OPID804 OPIA800, OPIA801, OPIA802, OPIA803	5,000 Vrms 2,500 Vrms
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron)	260° C

Input Diode

Continuous Forward Current OPIA802, OPIA803, OPID804 OPIA800, OPIA801	25 mA 20 mA
Peak Forward current (1 μs pulse width, 300 pps) OPIA800, OPIA801, OPIA802, OPIA803 OPID804	1 A 40 mA
Reverse Voltage OPIA800D, OPIA801D, OPIA802D, OPIA803D, OPID804D	5 V
Power Dissipation OPIA802D, OPIA803D, OPID804D OPIA800D, OPIA801D	45 mW 35 mW

Absolute Maximum Ratings ($T_A = 0^{\circ} C$ to $70^{\circ} C$ unless otherwise specified)

Output IC

Vcc—Collector-Emitter Voltage OPIA800D OPIA801D OPIA802D, OPIA803D	-0.5 V to +7 V -0.5 V to +18 V -0.5 V to +15 V
Collector Current OPIA802D, OPIA803D OPIA800D, OPIA801D	8 mA 60 mA
Power Dissipation OPIA800D, OPIA801D, OPIA802D, OPIA803D Output NAND Gate—OPID804D	100 mW

Output NAND Gate—OPID804D

Vcc—Supply voltage	7 V
Enable voltage	5.5 V
High Level Output voltage	7 V
Low Level Output current	50 mA
Output Collector Power Dissipation	85 mW

Electrical Characteristics OPIA800

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*6 Current transfer ratio	CTR	IF=1.6mA Vo=0.4V,Vcc=4.5V	300	1600	-	%
Logic (0) output volage	Vol	IF=1.6mA Io=4.8mA,Vcc=4.5V	-	0.1	0.4	V
Logic (1) output current	Іон	IF=0,Vo=Vcc=7V	-	0.1	250	uA
Logic (0) supply current	ICCL	IF=1.6mA,Vo=open,Vcc=5V	-	0.5	-	mΑ
Logic (1) supply current	Іссн	IF=0,Vo=open,Vcc=5V	-	10	-	nΑ
Input forward voltage	VF	Ta=25°ℂ,I⊧=1.6mA	-	1.5	1.7	V
Input forward voltage temperature coefficient	△VF/△Ta	IF=1.6mA	-	-1.9	-	mV/°C
Input reverse voltage	BVR	Ta=25°C,IR=10uA	5.0	-	-	V
Input capacitance	CIN	VF=0,f=1MHz	-	60	-	pF
*7 Leak current(input-output)	II-O	Ta=25°C ,45% RH VI-0=3kVDC,t=5s	-	-	1.0	uA
*7 Isolation resistance(input-output)	RI-O	V _{I-O} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance(input-output)	CI-O	f=1MHz	-	0.6	-	рF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time Output (1)>(0)	t PHL	RL=2.2kΩ,IF=1.6mA	ı	2	10	uS
*8 Propagation delay time Output (0)>(1)	t PLH	RL=2.2kΩ,IF=1.6mA	-	7	35	uS
*9 Instantaneous common *10 mode rejection voltage "Output (1)"	СМн	IF=0,VcM=10Vp-p,RL=2.2kΩ	-	500	-	V/uS
*9 Instantaneous common *10 mode rejection voltage "Output (0)"	CML	IF=1.6mA,Vcм=10Vp-p,RL=2.2kΩ	-	-500	-	V/uS

Electrical Characteristic OPIA801

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*6 Current transfer ratio	CTR(1)	I _F =0.5mA, V _O =0.4V, V _{CC} =4.5V	400	1800	-	%
o Garrett transfer fatto	CTR(2)	I _F =1.6mA, V _O =0.4V, V _{CC} =4.5V	500	1600	-	%
	V _{OL} (1)	I _F =6.4mA, I _O =1.6mA, V _{CC} =4.5V	-	0.1	0.4	٧
Logic (0) output voltage	V _{OL} (2)	I_F =5mA, I_O =15mA, V_{CC} =4.5V	-	0.1	0.4	٧
	V _{OL} (3)	I _F =12mA, I _O =24mA, V _{CC} =4.5V	-	0.1	0.4	٧
Logic (1) output current	I _{OH}	I _F =0, V _O =V _{CC} =18V	-	0.05	100	uA
Logic (0) supply current	I _{CCL}	I _F =1.6mA, V _O =open, V _{CC} =5V	-	0.5	-	mA
Logic (1) supply current	I _{CCH}	I _F =0, V _F =open, V _{CC} =5V	-	10	-	nA
Input forward voltage	V _F	Ta=25℃, I _F =1.6mA	-	1.5	1.7	V
Input forward voltage temperature coefficient	△V _F /△Ta	I _F =1.6mA	-	-1.9	-	mV/°C
Input reverse voltage	BV_R	Ta=25℃, I _R =10uA	5.0	-	-	V
Input capacitance	C _{IN}	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25°C , 45%RH V _{I-0} =3KVDC , t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-O}	V _{I-O} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time Output (1) → (0)	t	R _L =4.7KΩ, I _F =0.5mA	-	5	25	uS
	t _{PHL}	R_L =270 Ω , I_F =12mA	-	0.3	1	uS
Propagation delay time Output $(0) \rightarrow (1)$ t_{PLH}	+	R_L =4.7K Ω , I_F =0.5mA	-	10	60	uS
	I PLH	R_L =270 Ω , I_F =12mA	-	1.5	7	uS
Instantaneous common *9 mode rejection voltage *10 "Output (1) "	CM _H	I_F =0, V_{CM} =10 V_{P-P} , R_L =2.2 $K\Omega$	-	500	-	V/uS
Instantaneous common *9 mode rejection voltage *10 " Output (0) "	CM _L	I_F =1.6mA, V_{CM} =10 V_{P-P} , R_L =2.2 $K\Omega$	-	-500	-	V/uS

Electrical Characteristice OPIA802

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*5 Current transfer ratio	CTR(1)	Ta=25°ℂ , I _F =16mA V _O =0.4V, V _{CC} =4.5V	19	40	-	%
5 out on transfer ratio	CTR(2)	I_F =16mA V_O =0.5V, V_{CC} =4.5V	15	43	-	%
Logic (0) output voltage	V _{OL}	*6 V _{CC} =4.5V, I _F =16mA	-	0.1	0.4	V
Logic (1) output current	I _{OH} (1)	Ta=25°ℂ , I _F =0 V _O =V _{CC} =5.5V	-	3.0	500	nA
	I _{OH} (2)	Ta=25°∁, I _F =0 V _O =V _{CC} =15V	-	0.01	1.0	uA
	I _{OH} (3)	$V_{CC}=V_{O}=15V$, $I_{F}=0$	-	-	50	uA
Logic (0) supply current	I _{CCL}	I _F =16mA V _O =open, V _{CC} =15V	-	200	-	uA
Logic (1) supply current	I _{CCH} (1)	Ta=25°ℂ, I ₀ =0 V _F =open, V _{CC} =15V	-	0.02	1.0	uA
Logic (1) supply current	I _{CCH} (2)	I _O =0 V _O =open, V _{CC} =15V	-	-	2.0	uA
Input forward voltage	V_{F}	Ta=25°ℂ, I _F =16mA	-	1.7	1.95	V
Input forward voltage temperature coefficient	$\triangle V_F / \triangle Ta$	I _F =16mA	-	-1.9	-	mV/°C
Input reverse voltage	BV _R	Ta=25°C, I _R =10uA	5.0	-	-	V
Input capacitance	C _{IN}	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25°C , 45%RH V _{I-0} =3KVDC , t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-O}	V _{I-0} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF
Transistor current amplification factor	h _{FE}	V_0 =5 V , I_0 =3 mA	-	70	-	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time *9 Output (1) → (0)	t _{PHL}	R_L =1.9 $K\Omega$	-	0.3	0.8	uS
*8 Propagation delay time *9 Output (0) → (1)	t _{PLH}	R_L =1.9 $K\Omega$	-	0.3	0.8	uS
Instantaneous common *10 mode rejection voltage " Output (1) "	СМн	I _F =0, V _{CM} =10V _{P-P}	-	1000	ı	V/uS
Instantaneous common *10 mode rejection voltage *11 Output (0) "	CML	I _F =16mA, V _{CM} =10V _{P-P}	-	-1000	-	V/uS
*12 Bandwidth	BW	R_L =100 Ω	-	2.0	-	MHz

Electrical Characteristice OPIA803

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*5 Current transfer ratio	CTR(1)	Ta=25℃, I _F =16mA V _o =0.4V, V _{cc} =4.5V	7	40	-	%
3 Current transfer ratio	CTR(2)	I _F =16mA V _o =0.5V, V _{cc} =4.5V	5	43	-	%
Logic (0) output voltage	VoL	*6 V _{CC} =4.5V, I _F =16mA	-	0.1	0.4	V
	I _{OH} (1)	Ta=25°C , I _F =0 V _o =V _{cc} =5.5V	-	3.0	500	nA
Logic (1) output current	I _{OH} (2)	Ta=25°C , I _F =0 Vo=Vcc=15V	-	0.01	1.0	uA
	I _{OH} (3)	$V_{CC}=V_{O}=15V$, $I_{F}=0$	-	-	50	uA
Logic (0) supply current	I _{CCL}	I _F =16mA V _O =open, V _{CC} =15V	-	200	-	uA
Logic (1) supply current	I _{CCH} (1)	Ta=25°C, I _o =0 V _F =open, V _{CC} =15V	-	0.02	1.0	uA
Logic (1) supply current	I _{CCH} (2)	I _o =0 V _o =open, V _{cc} =15V	-	-	2.0	uA
Input forward voltage	V _F	Ta=25℃, I _F =16mA	-	1.7	1.95	V
Input forward voltage temperature coefficient	△V _F /△Ta	I _F =16mA	-	-1.9	-	mV/°C
Input reverse voltage	BV _R	Ta=25°C, I _R =10uA	5.0	-	-	V
Input capacitance	C _{IN}	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25℃, 45%RH V _{LO} =3KVDC, t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-0}	V _{I-0} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF
Transistor current amplification factor	h _{FE}	V ₀ =5V, I ₀ =3mA	-	70	-	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time *9 Output (1) → (0)	t _{PHL}	R _L =4.1K Ω	-	0.3	1.5	uS
*8 Propagation delay time *9 Output (0) → (1)	t _{PLH}	R _L =4.1KΩ	-	0.4	1.5	uS
Instantaneous common *10 mode rejection voltage " Output (1) "	СМн	I _F =0, V _{CM} =10V _{P-P}	-	1000	-	V/uS
Instantaneous common *10 mode rejection voltage " Output (0) "	CML	I _F =16mA, V _{CM} =10V _{P-P}	-	-1000	-	V/uS
*12 Bandwidth	BW	R_L =100 Ω	-	2.0	-	MHz

Electrical Characteristics (OPID804D)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS			
Input Diode									
V _F	Forward Voltage	-	1.6	1.8	V	I _F = 10 mA, T _A = 25° C			
BV _R	Reverse Breakdown Voltage	5	-	-	V	I _R = 10 μA, T _A = 25° C			
C _{IN}	Input Capacitance	-	60	-	pf	$V_F = 0.0 \text{ V}, f = 1 \text{M Hz}$			
Output Ph	otologic								
V _{OL}	Low Level Output Voltage	-	0.4	0.6	V	$I_{OL} = 13 \text{ mA}, V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA}, V_{EH} = 2 \text{V}$			
Іон	High Level Output Current	-	2	250	μΑ	V_{CC} =5.5 V, V_{O} =5.5 V, V_{E} =2.0 V, I_{F} =250 μ A			
I _{EH}	High Level Enable Current	-	-0.8	-	mA	$V_{CC} = 5.5 \text{ V}, V_E = 2.0 \text{ V}$			
I _{EL}	Low Level Enable Current	-2.0	-1.2	-	mA	$V_{CC} = 5.5 \text{ V}, V_E = 2.0 \text{ V}$			
I _{CCL}	Low Level Output Current	1	13	18	mA	$V_{CC} = 5.5 \text{ V}, V_E = 0.5 \text{ V}, I_F = 10 \text{ mA}$			
I _{CCH}	High Level Output Current	1	7	15	mA	$V_{CC} = 5.5 \text{ V}, V_E = 0.5 \text{ V}, I_F = 0 \text{ mA}$			
I _{I-O}	Leakage Current	ı	-	1.0	mA	$V_{I-O} = 3,000 \text{ V}, T_A = 25^{\circ} \text{ C}, t = 5 \text{ s},$ RH = 45%			
t _{EHL}	Enable Propagation delay "High to Low"	-	15	-	ns	$V_{\text{EH}} = 3.0 \text{ V}, V_{\text{EL}} = 0.5 \text{ V}, R_{\text{L}} = 350 \Omega$			
t _{ELH}	Enable Propagation delay "Low to High"	-	40	-	115	$I_F = 7.5 \text{ mA}, C_{LOAD} = 15 \text{ pf}$			
I _{FHL} / I _{FLH}	Hysteresis	-	0.8	-	Ratio	V_{CC} = 5 V, R_L = 280 Ω			
R _{I-O}	Input-Output Isolation resistance	-	10 ¹²	-	ohm	V _{I-O} = 500 V, T _A = 25° C			
C _{I-O}	Input-Output Capacitance	-	0.6	-	pf	f = 1M Hz, T _A = 25° C			
t _{PHL &} t _{PLH}	Propagation delay "High to Low" and "Low to High"	-	45	75	ns	$V_{CC} = 5 \text{ V}, R_L = 350 \Omega, I_F = 7.5 \text{ mA},$			
t _{R &} t _F	Rise and Fall Time	-	30	-		$C_{LOAD} = 15 \text{ pf}, T_A = 25^{\circ}\text{C}$			
СМн	Instantaneous common mode rejection voltage "High Output"	-	500	-	V/us	V_{CM} = 10 V, R_L = 350 Ω , I_F = 0 mA, V_O = 2.0 V			
CM _L	Instantaneous common mode rejection voltage "Low Output"	-	-500	-	v/us	V_{CM} = 10 V, R_L = 350 Ω , I_F = 5 mA, V_O = 0.8 V			

OPIA800

Fig.1 LED Forward Current vs. Forward Voltage

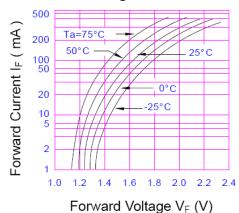


Fig.3 Response and Fall Time vs. Load Resistance

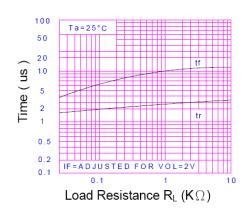


Fig.5 Current Transter Ratio vs. Base-Emitter Resistance

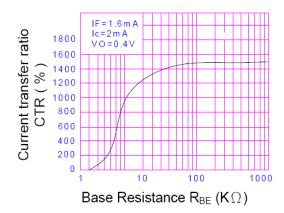


Fig.2 LED Forward Current vs.

Ambient Temperature

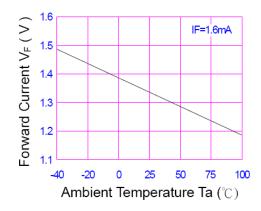
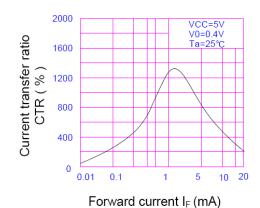
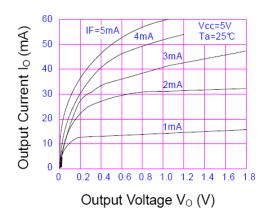
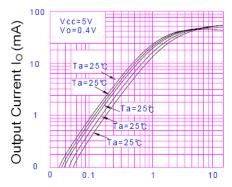


Fig.4 Current Transfer Ratio vs. Forward Current


Fig.6 Output Current vs. Output Voltage

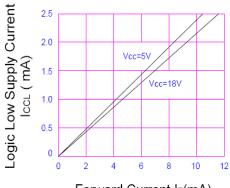

OPIA800

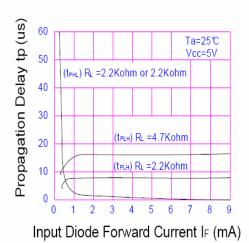
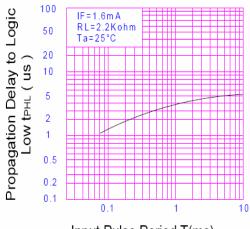
Fig.7 Output Current vs. Input Diode Forward Current

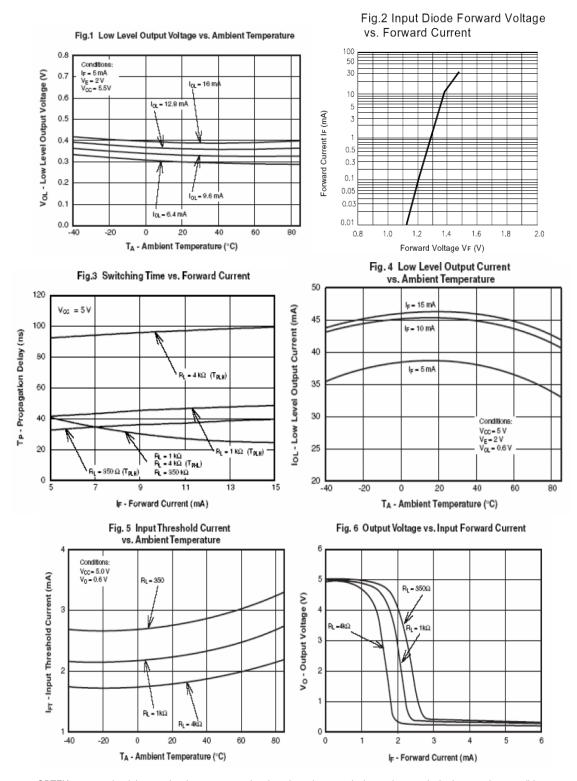
Input Diode Forward Current IF(mA)

Fig.8 Logic Low Supply Current vs. Input Diode Forward Current

Forward Current I_F(mA)

Fig.9 Propagation Delay vs.
Input Diode Forward Current


Fig.10 Propagation Delay to Logic Low vs. Pulse Period

Input Pulse Period T(ms)

OPID804

OPID804

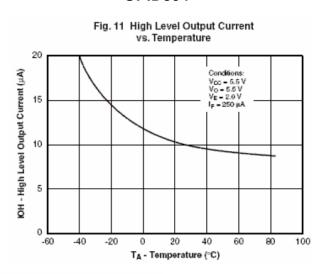


Fig. 9 Enable Propagation Delay vs. Temperature

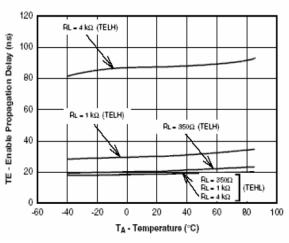


Fig. 10 Switching Time vs. Temperature

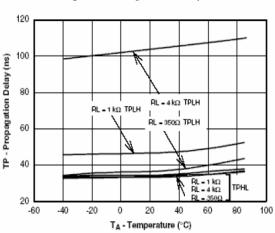
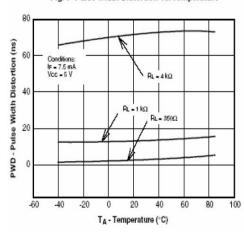
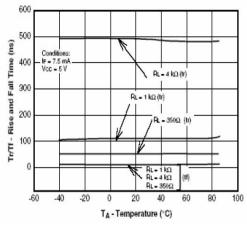
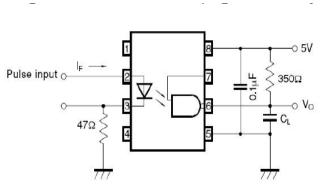
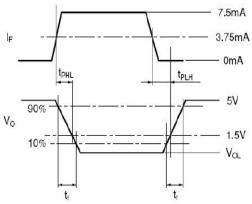
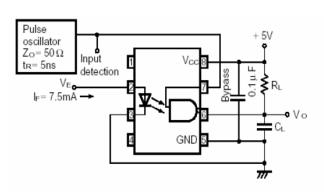
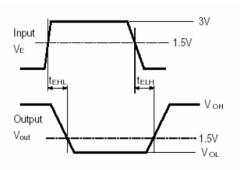


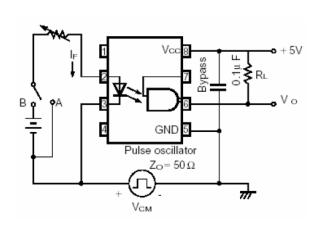
Fig. 7 Pulse Width Distortion vs. Temperature

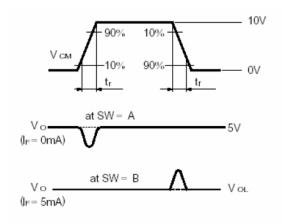





Fig. 8 Rise and Fall Time vs. Temperature




Test Circuit Propagation Delay Time




Test Circuit for Enable Propagation Delay Time

Test Circuit for Instantaneous Common Mode Rejection Voltage

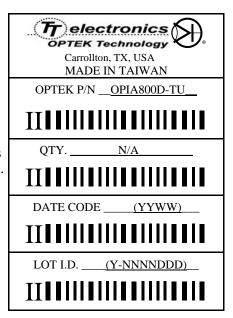
Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions
LITER D.I.	± 10%	11 samples after 500Hrs
HTRB D I _{C(OFF)}	0 Fail	@ VCE = 5.0VDC, Ta = 70°C
HTED DI	± 10%	50 samples after 96Hrs
HTFB D I _{C(ON)}	0 Fail	@ Max P _D , Ta = 25°C
MTTF @ 90% confidence	150,000 Min.	@ 25°C, 25mADC
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.
Glass Transition of body	125°C Min.	DSC test method
Temperature Humidity-Bias	± 20%	85°C, 85%RH, 500Hrs, 80% min Iceo
Temperature Cycle	± 20%	per Method 1010.7 of MIL-STD-883E
High Temperature Storage	± 20%	85°C, 500Hrs
Autoclave	0 Fail	$T_A = 121$ °C, Pressure = 15psi, Humidity = 100%, Time = 96Hrs

Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC


Label Identification

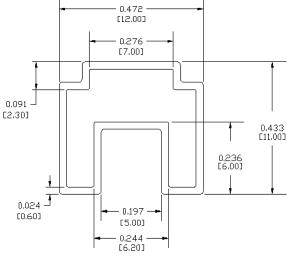
DESCRIPTION:

Size: 3" (7.4 cm) X 2.2" (5.5 cm) Lettering shall be black on white background. Format shall be as:

Notes:

- 1. The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
- 2. The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture. or use equivalent label format.

Packaging Information:


Dowl Mirror borg			Tube		Inner		Small Carton		Medium Carton			Large Carton		on	
		Packaging			52 x 7 x 7.5 cm		53.5 x 16 x 17.5 cm			53.5 x 30.7 x 17.5 cm		53.5 x 30.7 x 25 cm			
		Quantities	Qey	Weight	Qy	Wolghe	Qy	Wolghe	Cross Weight	Qy	Wolghe	Gross Weight	Qq	Wolghs	Wolgh
4 PIN OPIA4000/A, OPIA410D/A - OPIA413D/A		100	44	3,000	1.40	12000	6.0	6.5	24000	12.0	12.5	36,000	18.0	16.5	
and SMD	6 PIN OPIA6XXD/A Series		65	44	1,990	1.50	7,800	6.5	7.0	15600	12.0	12.5	23,400	18.5	19.0
	8 PIN OPIA8XXD Series and OPID804D		48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F	OPIA5008, OPIA4018 - OPIA4048,	OPIA4148	100	24	6,000	1.60	24000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.1
SSOP	OPIA405C - OPIA409C		170	_	10,200	-									

P/H = Pin-Hole Packages (Referred as D = Dual-in-Line Package) SMD = Standard Surface Mount Packages (Referred as A = 6.5mil SMD)

M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as 8=4.40ml SMD w/ 2.54 Lead-Spacing)

SSOP = Slim SOP Packages (Referred as C = 4.40mil SMD with 1.27 Lead-Spacing)

Tube Packaging Specifications (TU):

[± 0.2 MILLIMETERS]

Phone: (972) 323-2200 or (800) 341-4747

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

FAX: (972) 323-2396 sensors@optekinc.com www.optekinc.com

19.685±0.020

[500±0.5]

Issue	Change Description	Approval	Date
А	-Initial Release	Chima Ehiem	9/7/2008
A.1	Added ML certification no. and VDE pending (pg 1) Added title for Package dimensions and schematics (pg. 2) Updated label specification from 7.5" to 7.4" (pg. 14) Updated label specification adding Optek Logo (pg. 14) Updated MSL for Quality/Reliability to MSL 1 (pg 14) Unified fonts on some subheaders in the parametric charts. Updated 8-Pin Tube Packaging Drawing with double dimensions. (pg. 17)	Chima Ehiem	10/13/2008